This article requires additional links for verification . |
Wilks coefficient
or
Wilkes' formula
is a mathematical ratio that can be used to measure the relative strength of powerlifters despite the athletes' different weight classes. Robert Wilkes, CEO of Powerlifting Australia, is the originator of the formula.
The formula was updated in March 2022 to ensure the odds were rebalanced so that men's and women's results were better matched and the extreme weight classes were brought into better balance with the middle weight classes. [1]
Equation[edit]
The following equation is used to calculate the Wilks ratio. The total weight lifted (in kg) is multiplied by a factor to find the standard amount lifted, normalized across all body weights.
Coeff = 500 a + b x + c x 2 + d x 3 + e x 4 + f x 5 {\displaystyle {\text{Coeff}}={\frac {500}{a+bx+cx^{2 }+dx^{3}+ex^{4}+fx^{5}}}}
x is the athlete’s body weight in kilograms.
Values for men
:
- A
= −216,0475144 - b
= 16,2606339 - With
= -0,002388645 - d
= -0,00113732 - e
= 7.01863E − 06 - f
= −1,291 × 10 −08
Values for women
:
- A
= 594,31747775582 - b
= -27,23842536447 - With
= 0,82112226871 - d
= -0,00930733913 - e
= 4.731582E − 05 - f
= -9,054 × 10 -08
Wilkes formula for men
weight 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 40 1.3354 1.3311 1.3268 1.3225 1.3182 1.3140 1.3098 1.3057 1.3016 1.2975 41 1.2934 1 .2894 1.2854 1.2814 1.2775 1.2736 1.2697 1.2658 1.2620 1.2582 42 1.2545 1.2507 1.2470 1.2433 1.2397 1.2360 1.2324 1.2289 1.22 53 1.2218 43 1.2183 1.2148 1.2113 1.2079 1.2045 1.2011 1.1978 1.1944 1.1911 1.1878 44 1.1846 1.1813 1.1781 1.1749 1.1717 1.1686 1.1654 1.1623 1.1592 1.1562 45 1.1531 1.150 1 1.1471 1.1441 1.1411 1.1382 1.1352 1.1323 1.1294 1.1266 46 1.1237 1.1209 1.1181 1.1153 1.1125 1.1097 1.1070 1.1042 1.1015 1.0988 47 1.0962 1.0935 1.0909 1.0882 1.0856 1.0830 1.0805 1.0779 1.0754 1.0728 48 1.0703 1.0678 1.0653 1.0629 1.0604 1.0580 1.0556 1.0532 1.0508 1.0484 49 1.0460 1.0437 1.0413 1.0390 1.0367 1.0344 1.0321 1.0299 1.0276 1.0254 50 1.0232 1.0210 1.0188 1.0166 1.0144 1.0122 1.0101 1.0079 1.0058 1.0037 51 1.0016 0.9995 0.9975 0.9954 0.9933 0.9913 0.9893 0.9873 0.9853 0.9833 52 0.9813 0.9793 0.9773 0.9754 0.9735 0.9715 0.9696 0.9677 0.9658 0.9639 53 0.9621 0.9602 0.9583 0.9565 0.9547 0.9528 0.9510 0.9492 0.9474 0.9457 54 0.9439 0.9421 0.9404 0.9386 0.9369 0.9352 0.9334 0.9317 0.9300 0.9283 55 0.9267 0.9250 0.9233 0.9217 0.9200 0.9184 0.9168 0.9152 0.9135 0.9119 56 0.9103 0.9088 0.9072 0.9056 0.9041 0.9025 0.9010 0.8994 0.8979 0.8964 57 0.8949 0.8934 0.8919 0.8904 0.8889 0.8874 0.8859 0.8845 0.8830 0.8816 58 0.8802 0.8787 0.8773 0.8759 0.8745 0.8731 0.8717 0.8703 0.8689 0.8675 59 0.8662 0.8648 0.8635 0.8621 0.8608 0.8594 0.8581 0.8568 0.8555 0.8542 60 0.8529 0.8516 0.8503 0.8490 0.8477 0.8465 0.8452 0.8439 0.8427 0.8415 61 0.8402 0.8390 0.8378 0.8365 0.8353 0.8341 0.8329 0.8317 0.8305 0.8293 62 0.8281 0.8270 0.8258 0.8246 0.8235 0.8223 0.8212 0.8200 0.8189 0.8178 63 0.8166 0.8155 0.8144 0.8133 0.8122 0.8111 0.8100 0.8089 0.8078 0.8067 64 0.8057 0.8046 0.8035 0.8025 0.8014 0.8004 0.7993 0.7983 0.7973 0.7962 65 0.7952 0.7942 0.7932 0.7922 0.7911 0.7901 0.7891 0.7881 0.7872 0.7862 66 0.7852 0.7842 0.7832 0.7823 0.7813 0.7804 0.7794 0.7785 0.7775 0.7766 67 0.7756 0.7747 0.7738 0.7729 0.7719 0.7710 0.7701 0.7692 0.7683 0.7674 68 0.7665 0.7656 0.7647 0.7638 0.7630 0.7621 0.7612 0.7603 0.7595 0.7586 69 0.7578 0.7569 0.7561 0.7552 0.7544 0.7535 0.7527 0.7519 0.7510 0.7502 70 0.7494 0.7486 0.7478 0.7469 0.7461 0.7453 0.7445 0.7437 0.7430 0.7422 71 0.7414 0.7406 0.7398 0.7390 0.7383 0.7375 0.7367 0.7360 0.7352 0.7345 72 0.7337 0.7330 0.7322 0.7315 0.7307 0.7300 0.7293 0.7285 0.7278 0.7271 73 0.7264 0.7256 0.7249 0.7242 0.7235 0.7228 0.7221 0.7214 0.7207 0.7200 74 0.7193 0.7186 0.7179 0.7173 0.7166 0.7159 0.7152 0.7146 0.7139 0.7132 75 0.7126 0.7119 0.7112 0.7106 0.7099 0.7093 0.7086 0.7080 0.7074 0.7067 76 0.7061 0.7055 0.7048 0.7042 0.7036 0.7029 0.7023 0.7017 0.7011 0.7005 77 0.6999 0.6993 0.6987 0.6981 0.6975 0.6969 0.6963 0.6957 0.6951 0.6945 78 0.6939 0.6933 0.6927 0.6922 0.6916 0.6910 0.6905 0.6899 0.6893 0.6888 79 0.6882 0.6876 0.6871 0.6865 0.6860 0.6854 0.6849 0.6843 0.6838 0.6832 80 0.6827 0.6822 0.6816 0.6811 0.6806 0.6800 0.6795 0.6790 0.6785 0.6779 81 0.6774 0.6769 0.6764 0.6759 0.6754 0.6749 0.6744 0.6739 0.6734 0.6729 82 0.6724 0.6719 0.6714 0.6709 0.6704 0.6699 0.6694 0.6689 0.6685 0.6680 83 0.6675 0.6670 0.6665 0.6661 0.6656 0.6651 0.6647 0.6642 0.6637 0.6633 84 0.6628 0.6624 0.6619 0.6615 0.6610 0.6606 0.6601 0.6597 0.6592 0.6588 85 0.6583 0.6579 0.6575 0.6570 0.6566 0.6562 0.6557 0.6553 0.6549 0.6545 86 0.6540 0.6536 0.6532 0.6528 0.6523 0.6519 0.6515 0.6511 0.6507 0.6503 87 0.6499 0.6495 0.6491 0.6487 0.6483 0.6479 0.6475 0.6471 0.6467 0.6463 88 0.6459 0.6455 0.6451 0.6447 0.6444 0.6440 0.6436 0.6432 0.6428 0.6424 89 0.6421 0.6417 0.6413 0.6410 0.6406 0.6402 0.6398 0.6395 0.6391 0.6388 90 0.6384 0.6380 0.6377 0.6373 0.6370 0.6366 0.6363 0.6359 0.6356 0.6352 91 0.6349 0.6345 0.6342 0.6338 0.6335 0.6331 0.6328 0.6325 0.6321 0.6318 92 0.6315 0.6311 0.6308 0.6305 0.6301 0.6298 0.6295 0.6292 0.6288 0.6285 93 0.6282 0.6279 0.6276 0.6272 0.6269 0.6266 0.6263 0.6260 0.6257 0.6254 94 0.6250 0.6247 0.6244 0.6241 0.6238 0.6235 0.6232 0.6229 0.6226 0.6223 95 0.6220 0.6217 0.6214 0.6211 0.6209 0.6206 0.6203 0.6200 0.6197 0.6194 96 0.6191 0.6188 0.6186 0.6183 0.6180 0.6177 0.6174 0.6172 0.6169 0.6166 97 0.6163 0.6161 0.6158 0.6155 0.6152 0.6150 0.6147 0.6144 0.6142 0.6139 98 0.6136 0.6134 0.6131 0.6129 0.6126 0.6123 0.6121 0.6118 0.6116 0.6113 99 0.6111 0.6108 0.6106 0.6103 0.6101 0.6098 0.6096 0.6093 0.6091 0.6088 100 0.6086 0.6083 0.6081 0.6079 0.6076 0.6074 0.6071 0.6069 0.6067 0.6064 101 0.6062 0.6060 0.6057 0.6055 0.6053 0.6050 0.6048 0.6046 0.6044 0.6041 102 0.6039 0.6037 0.6035 0.6032 0.6030 0.6028 0.6026 0.6024 0.6021 0.6019 103 0.6017 0.6015 0.6013 0.6011 0.6009 0.6006 0.6004 0.6002 0.6000 0.5998 104 0.5996 0.5994 0.5992 0.5990 0.5988 0.5986 0.5984 0.5982 0.5980 0.5978 105 0.5976 0.5974 0.5972 0.5970 0.5968 0.5966 0.5964 0.5962 0.5960 0.5958 106 0.5956 0.5954 0.5952 0.5950 0.5948 0.5946 0.5945 0.5943 0.5941 0.5939 107 0.5937 0.5935 0.5933 0.5932 0.5930 0.5928 0.5926 0.5924 0.5923 0.5921 108 0.5919 0.5917 0.5916 0.5914 0.5912 0.5910 0.5909 0.5907 0.5905 0.5903 109 0.5902 0.5900 0.5898 0.5897 0.5895 0.5893 0.5892 0.5890 0.5888 0.5887 110 0.5885 0.5883 0.5882 0.5880 0.5878 0.5877 0.5875 0.5874 0.5872 0.5870 111 0.5869 0.5867 0.5866 0.5864 0.5863 0.5861 0.5860 0.5858 0.5856 0.5855 112 0.5853 0.5852 0.5850 0.5849 0.5847 0.5846 0.5844 0.5843 0.5841 0.5840 113 0.5839 0.5837 0.5836 0.5834 0.5833 0.5831 0.5830 0.5828 0.5827 0.5826 114 0.5824 0.5823 0.5821 0.5820 0.5819 0.5817 0.5816 0.5815 0.5813 0.5812 115 0.5811 0.5809 0.5808 0.5806 0.5805 0.5804 0.5803 0.5801 0.5800 0.5799 116 0.5797 0.5796 0.5795 0.5793 0.5792 0.5791 0.5790 0.5788 0.5787 0.5786 117 0.5785 0.5783 0.5782 0.5781 0.5780 0.5778 0.5777 0.5776 0.5775 0.5774 118 0.5772 0.5771 0.5770 0.5769 0.5768 0.5766 0.5765 0.5764 0.5763 0.5762 119 0.5761 0.5759 0.5758 0.5757 0.5756 0.5755 0.5754 0.5753 0.5751 0.5750 120 0.5749 0.5748 0.5747 0.5746 0.5745 0.5744 0.5743 0.5742 0.5740 0.5739 121 0.5738 0.5737 0.5736 0.5735 0.5734 0.5733 0.5732 0.5731 0.5730 0.5729 122 0.5728 0.5727 0.5726 0.5725 0.5724 0.5723 0.5722 0.5721 0.5720 0.5719 123 0.5718 0.5717 0.5716 0.5715 0.5714 0.5713 0.5712 0.5711 0.5710 0.5709 124 0.5708 0.5707 0.5706 0.5705 0.5704 0.5703 0.5702 0.5701 0.5700 0.5699 125 0.5698 0.5698 0.5697 0.5696 0.5695 0.5694 0.5693 0.5692 0.5691 0.5690 126 0.5689 0.5688 0.5688 0.5687 0.5686 0.5685 0.5684 0.5683 0.5682 0.5681 127 0.5681 0.5680 0.5679 0.5678 0.5677 0.5676 0.5675 0.5675 0.5674 0.5673 128 0.5672 0.5671 0.5670 0.5670 0.5669 0.5668 0.5667 0.5666 0.5665 0.5665 129 0.5664 0.5663 0.5662 0.5661 0.5661 0.5660 0.5659 0.5658 0.5658 0.5657 130 0.5656 0.5655 0.5654 0.5654 0.5653 0.5652 0.5651 0.5651 0.5650 0.5649 131 0.5648 0.5647 0.5647 0.5646 0.5645 0.5644 0.5644 0.5643 0.5642 0.5642 132 0.5641 0.5640 0.5639 0.5639 0.5638 0.5637 0.5636 0.5636 0.5635 0.5634 133 0.5634 0.5633 0.5632 0.5631 0.5631 0.5630 0.5629 0.5629 0.5628 0.5627 134 0.5627 0.5626 0.5625 0.5624 0.5624 0.5623 0.5622 0.5622 0.5621 0.5620 135 0.5620 0.5619 0.5618 0.5618 0.5617 0.5616 0.5616 0.5615 0.5614 0.5614 136 0.5613 0.5612 0.5612 0.5611 0.5610 0.5610 0.5609 0.5609 0.5608 0.5607 137 0.5607 0.5606 0.5605 0.5605 0.5604 0.5603 0.5603 0.5602 0.5602 0.5601 138 0.5600 0.5600 0.5599 0.5598 0.5598 0.5597 0.5597 0.5596 0.5595 0.5595 139 0.5594 0.5593 0.5593 0.5592 0.5592 0.5591 0.5590 0.5590 0.5589 0.5589 140 0.5588 0.5587 0.5587 0.5586 0.5586 0.5585 0.5584 0.5584 0.5583 0.5583 141 0.5582 0.5582 0.5581 0.5580 0.5580 0.5579 0.5579 0.5578 0.5578 0.5577 142 0.5576 0.5576 0.5575 0.5575 0.5574 0.5573 0.5573 0.5572 0.5572 0.5571 143 0.5571 0.5570 0.5570 0.5569 0.5568 0.5568 0.5567 0.5567 0.5566 0.5566 144 0.5565 0.5564 0.5564 0.5563 0.5563 0.5562 0.5562 0.5561 0.5561 0.5560 145 0.5560 0.5559 0.5558 0.5558 0.5557 0.5557 0.5556 0.5556 0.5555 0.5555 146 0.5554 0.5554 0.5553 0.5552 0.5552 0.5551 0.5551 0.5550 0.5550 0.5549 147 0.5549 0.5548 0.5548 0.5547 0.5547 0.5546 0.5546 0.5545 0.5544 0.5544 148 0.5543 0.5543 0.5542 0.5542 0.5541 0.5541 0.5540 0.5540 0.5539 0.5539 149 0.5538 0.5538 0.5537 0.5537 0.5536 0.5536 0.5535 0.5535 0.5534 0.5533 150 0.5533 0.5532 0.5532 0.5531 0.5531 0.5530 0.5530 0.5529 0.5529 0.5528 151 0.5528 0.5527 0.5527 0.5526 0.5526 0.5525 0.5525 0.5524 0.5524 0.5523 152 0.5523 0.5522 0.5522 0.5521 0.5521 0.5520 0.5520 0.5519 0.5519 0.5518 153 0.5518 0.5517 0.5516 0.5516 0.5515 0.5515 0.5514 0.5514 0.5513 0.5513 154 0.5512 0.5512 0.5511 0.5511 0.5510 0.5510 0.5509 0.5509 0.5508 0.5508 155 0.5507 0.5507 0.5506 0.5506 0.5505 0.5505 0.5504 0.5504 0.5503 0.5503 156 0.5502 0.5502 0.5501 0.5501 0.5500 0.5500 0.5499 0.5499 0.5498 0.5498 157 0.5497 0.5497 0.5496 0.5496 0.5495 0.5495 0.5494 0.5494 0.5493 0.5493 158 0.5492 0.5492 0.5491 0.5491 0.5490 0.5490 0.5489 0.5489 0.5488 0.5488 159 0.5487 0.5487 0.5486 0.5486 0.5485 0.5485 0.5484 0.5484 0.5483 0.5483 160 0.5482 0.5482 0.5481 0.5481 0.5480 0.5480 0.5479 0.5479 0.5478 0.5478 161 0.5477 0.5477 0.5476 0.5476 0.5475 0.5475 0.5474 0.5474 0.5473 0.5472 162 0.5472 0.5471 0.5471 0.5470 0.5470 0.5469 0.5469 0.5468 0.5468 0.5467 163 0.5467 0.5466 0.5466 0.5465 0.5465 0.5464 0.5464 0.5463 0.5463 0.5462 164 0.5462 0.5461 0.5461 0.5460 0.5460 0.5459 0.5459 0.5458 0.5458 0.5457 165 0.5457 0.5456 0.5456 0.5455 0.5455 0.5454 0.5454 0.5453 0.5453 0.5452 166 0.5452 0.5451 0.5451 0.5450 0.5450 0.5449 0.5449 0.5448 0.5448 0.5447 167 0.5447 0.5446 0.5446 0.5445 0.5445 0.5444 0.5444 0.5443 0.5443 0.5442 168 0.5442 0.5441 0.5441 0.5440 0.5440 0.5439 0.5439 0.5438 0.5438 0.5437 169 0.5436 0.5436 0.5435 0.5435 0.5434 0.5434 0.5433 0.5433 0.5432 0.5432 170 0.5431 0.5431 0.5430 0.5430 0.5429 0.5429 0.5428 0.5428 0.5427 0.5427 171 0.5426 0.5426 0.5425 0.5425 0.5424 0.5424 0.5423 0.5423 0.5422 0.5422 172 0.5421 0.5421 0.5420 0.5420 0.5419 0.5419 0.5418 0.5418 0.5417 0.5417 173 0.5416 0.5416 0.5415 0.5415 0.5414 0.5414 0.5413 0.5413 0.5412 0.5412 174 0.5411 0.5411 0.5410 0.5410 0.5409 0.5409 0.5408 0.5408 0.5407 0.5407 175 0.5406 0.5406 0.5405 0.5405 0.5404 0.5404 0.5403 0.5403 0.5402 0.5402 176 0.5401 0.5401 0.5400 0.5400 0.5399 0.5399 0.5398 0.5398 0.5397 0.5397 177 0.5396 0.5396 0.5395 0.5395 0.5394 0.5394 0.5393 0.5393 0.5392 0.5392 178 0.5391 0.5391 0.5390 0.5390 0.5389 0.5389 0.5388 0.5388 0.5387 0.5387 179 0.5387 0.5386 0.5386 0.5385 0.5385 0.5384 0.5384 0.5383 0.5383 0.5382 180 0.5382 0.5381 0.5381 0.5380 0.5380 0.5379 0.5379 0.5378 0.5378 0.5377 181 0.5377 0.5377 0.5376 0.5376 0.5375 0.5375 0.5374 0.5374 0.5373 0.5373 182 0.5372 0.5372 0.5371 0.5371 0.5371 0.5370 0.5370 0.5369 0.5369 0.5368 183 0.5368 0.5367 0.5367 0.5366 0.5366 0.5366 0.5365 0.5365 0.5364 0.5364 184 0.5363 0.5363 0.5362 0.5362 0.5362 0.5361 0.5361 0.5360 0.5360 0.5359 185 0.5359 0.5359 0.5358 0.5358 0.5357 0.5357 0.5356 0.5356 0.5356 0.5355 186 0.5355 0.5354 0.5354 0.5353 0.5353 0.5353 0.5352 0.5352 0.5351 0.5351 187 0.5351 0.5350 0.5350 0.5349 0.5349 0.5349 0.5348 0.5348 0.5347 0.5347 188 0.5347 0.5346 0.5346 0.5345 0.5345 0.5345 0.5344 0.5344 0.5344 0.5343 189 0.5343 0.5342 0.5342 0.5342 0.5341 0.5341 0.5341 0.5340 0.5340 0.5340 190 0.5339 0.5339 0.5338 0.5338 0.5338 0.5337 0.5337 0.5337 0.5336 0.5336 191 0.5336 0.5335 0.5335 0.5335 0.5334 0.5334 0.5334 0.5333 0.5333 0.5333 192 0.5332 0.5332 0.5332 0.5332 0.5331 0.5331 0.5331 0.5330 0.5330 0.5330 193 0.5329 0.5329 0.5329 0.5329 0.5328 0.5328 0.5328 0.5327 0.5327 0.5327 194 0.5327 0.5326 0.5326 0.5326 0.5326 0.5325 0.5325 0.5325 0.5325 0.5324 195 0.5324 0.5324 0.5324 0.5323 0.5323 0.5323 0.5323 0.5322 0.5322 0.5322 196 0.5322 0.5322 0.5321 0.5321 0.5321 0.5321 0.5321 0.5320 0.5320 0.5320 197 0.5320 0.5320 0.5319 0.5319 0.5319 0.5319 0.5319 0.5319 0.5318 0.5318 198 0.5318 0.5318 0.5318 0.5318 0.5318 0.5317 0.5317 0.5317 0.5317 0.5317 199 0.5317 0.5317 0.5317 0.5317 0.5316 0.5316 0.5316 0.5316 0.5316 0.5316 200 0.5316 0.5316 0.5316 0.5316 0.5316 0.5315 0.5315 0.5315 0.5315 0.5315 201 0.5315 0.5315 0.5315 0.5315 0.5315 0.5315 0.5315 0.5315 0.5315 0.5315 202 0.5315 0.5315 0.5315 0.5315 0.5315 0.5315 0.5315 0.5315 0.5315 0.5315 203 0.5315 0.5315 0.5315 0.5315 0.5315 0.5315 0.5316 0.5316 0.5316 0.5316 204 0.5316 0.5316 0.5316 0.5316 0.5316 0.5316 0.5316 0.5317 0.5317 0.5317 205 0.5317 0.5317 0.5317 0.5317 0.5318 0.5318 0.5318 0.5318 0.5318 0.5318
Validity [edit]
One journal article was written on the topic of testing Wilks' formula. [2] Based on the world record holders for men and women and the top two athletes in each event at the 1996 and 1997 IPF World Championships (a total of 30 men and 27 women in each event), it was concluded:
- There is no bias for men's or women's bench press and totals.
- Women's squats show a favorable bias toward middleweight athletes, but men's squats do not.
- There is a linear unfavorable trend towards heavier men and women deadlifting.
Example[edit]
The main function of the Wilks formula is in competitive powerlifting. It is used to determine the best athletes in different weight classes and can also be used to compare male and female athletes as there are formulas for both genders. The first, second and third places on the podium, within the limits of their age, weight and gender, are awarded to the participants who lifted the most weight, respectively. If two athletes in a class reach the same overall total weight, the lighter athlete is determined to be the winner.
The Wilks formula is used to compare and determine the absolute champions in different categories. The formula can also be used in team and handicap competitions where the team consists of athletes of different body weights. The Wilkes formula, like its predecessors (the O'Carroll [3] and Schwartz [4] formulas), was created to correct the imbalance where lighter athletes tend to have a higher power-to-weight ratio, and lighter athletes tend to lift greater weight compared to its own weight. This occurs for a number of reasons related to simple physics, the nature of the structure and limitations of the human skeletal and muscular system, and shorter leverage in smaller people. [5]Note in the results section that lighter athletes weighing less than 100 kg achieve amounts of ten times their body weight, while heavier athletes do not. The Wilkes System is primarily a handicapping process that provides an adjusted statistical method for comparing all athletes of different classes and groups on an equal basis and makes allowances for differences.
Under this scheme, a male lifter weighing 320 pounds and lifting a total of 1,400 pounds would have a normalized lift weight of 353.0, and a male lifter weighing 200 pounds and lifting a total of 1,000 pounds (the sum of their highest successful attempts at the lift). squat, bench press and deadlift) would have a normalized lift weight of 288.4. So a 320 pound athlete will win this competition. Notably, the lighter athlete was actually stronger based on their body weight, totaling 5 times their body weight, while the heavier athlete could only handle 4.375 times their body weight. Thus, the Wilks coefficient
places more emphasis on absolute strength rather than ranking athletes solely based on the athlete's relative strength compared to body weight. This creates a level playing field between lightweight and heavyweight athletes—lighter athletes typically have higher levels of relative strength compared to heavier athletes, who tend to have higher amounts of absolute strength.
Wilks formula for women
weight 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 40 1.4936 1.4915 1.4894 1.4872 1.4851 1.4830 1.4809 1.4788 1.4766 1.4745 41 1.4724 1 .4702 1.4681 1.4660 1.4638 1.4617 1.4595 1.4574 1.4552 1.4531 42 1.4510 1.4488 1.4467 1.4445 1.4424 1.4402 1.4381 1.4359 1.43 38 1.4316 43 1.4295 1.4273 1.4252 1.4231 1.4209 1.4188 1.4166 1.4145 1.4123 1.4102 44 1.4081 1.4059 1.4038 1.4017 1.3995 1.3974 1.3953 1.3932 1.3910 1.3889 45 1.3868 1.384 7 1.3825 1.3804 1.3783 1.3762 1.3741 1.3720 1.3699 1.3678 46 1.3657 1.3636 1.3615 1.3594 1.3573 1.3553 1.3532 1.3511 1.3490 1 .3470 47 1.3449 1.3428 1.3408 1.3387 1.3367 1.3346 1.3326 1.3305 1.3285 1.3265 48 1.3244 1.3224 1.3204 1.3183 1.3163 1.3143 1.3123 1.3103 1.3083 1.3063 49 1.3043 1.3023 1.3004 1.2984 1.2964 1.2944 1.2925 1 .2905 1.2885 1.2866 50 1.2846 1.2827 1.2808 1.2788 1.2769 1.2750 1.2730 1.2711 1.2692 1.2673 51 1.2654 1.2635 1.2616 1.2597 1 .2578 1.2560 1.2541 1.2522 1.2504 1.2485 52 1.2466 1.2448 1.2429 1.2411 1.2393 1.2374 1.2356 1.2338 1.2320 1.2302 53 1.2284 1.2266 1.2248 1.2230 1.2212 1.2194 1.2176 1.2159 1.2141 1.2123 54 1.2106 1.2088 1.207 1 1.2054 1.2036 1.2019 1.2002 1.1985 1.1967 1.1950 55 1.1933 1.1916 1.1900 1.1883 1.1866 1.1849 1.1832 1.1816 1.1799 1.1783 5 6 1.1766 1.1750 1.1733 1.1717 1.1701 1.1684 1.1668 1.1652 1.1636 1.1620 57 1.1604 1.1588 1.1572 1.1556 1.1541 1.1525 1.1509 1.1494 1.1478 1.1463 58 1.1447 1.1432 1.1416 1.1401 1.1386 1.1371 1.1355 1.1340 1 .1325 1.1310 59 1.1295 1.1281 1.1266 1.1251 1.1236 1.1221 1.1207 1.1192 1.1178 1.1163 60 1.1149 1.1134 1.1120 1.1106 1.1092 1 .1078 1.1063 1.1049 1.1035 1.1021 61 1.1007 1.0994 1.0980 1.0966 1.0952 1.0939 1.0925 1.0911 1.0898 1.0884 62 1.0871 1.0858 1.0844 1.0831 1.0818 1.0805 1.0792 1.0779 1.0765 1.0753 63 1.0740 1.0727 1.0714 1.070 1 1.0688 1.0676 1.0663 1.0650 1.0638 1.0625 64 1.0613 1.0601 1.0588 1.0576 1.0564 1.0551 1.0539 1.0527 1.0515 1.0503 65 1.049 1 1.0479 1.0467 1.0455 1.0444 1.0432 1.0420 1.0408 1.0397 1.0385 66 1.0374 1.0362 1.0351 1.0339 1.0328 1.0317 1.0306 1.0294 1.0283 1.0272 67 1.0261 1.0250 1.0239 1.0228 1.0217 1.0206 1.0195 1.0185 1.0174 1 .0163 68 1.0153 1.0142 1.0131 1.0121 1.0110 1.0100 1.0090 1.0079 1.0069 1.0059 69 1.0048 1.0038 1.0028 1.0018 1.0008 0.9998 0 .9988 0.9978 0.9968 0.9958 70 0.9948 0.9939 0.9929 0.9919 0.9910 0.9900 0.9890 0.9881 0.9871 0.9862 71 0.9852 0.9843 0.9834 0.9824 0.9815 0.9806 0.9797 0.9788 0.9779 0.9769 72 0.9760 0.9751 0.9742 0.9734 0.972 5 0.9716 0.9707 0.9698 0.9689 0.9681 73 0.9672 0.9663 0.9655 0.9646 0.9638 0.9629 0.9621 0.9613 0.9604 0.9596 74 0.9587 0.957 9 0.9571 0.9563 0.9555 0.9547 0.9538 0.9530 0.9522 0.9514 75 0.9506 0.9498 0.9491 0.9483 0.9475 0.9467 0.9459 0.9452 0.9444 0.9436 76 0.9429 0.9421 0.9414 0.9406 0.9399 0.9391 0.9384 0.9376 0.9369 0.9362 7 7 0.9354 0.9347 0.9340 0.9333 0.9326 0.9318 0.9311 0.9304 0.9297 0.9290 78 0.9283 0.9276 0.9269 0.9263 0.9256 0.9249 0.9242 0 .9235 0.9229 0.9222 79 0.9215 0.9209 0.9202 0.9195 0.9189 0.9182 0.9176 0.9169 0.9163 0.9156 80 0.9150 0.9144 0.9137 0.9131 0.9125 0.9119 0.9112 0.9106 0.9100 0.9094 81 0.9088 0.9082 0.9076 0.9070 0.9064 0.905 8 0.9052 0.9046 0.9040 0.9034 82 0.9028 0.9023 0.9017 0.9011 0.9005 0.9000 0.8994 0.8988 0.8983 0.8977 83 0.8972 0.8966 0.896 1 0.8955 0.8950 0.8944 0.8939 0.8933 0.8928 0.8923 84 0.8917 0.8912 0.8907 0.8902 0.8896 0.8891 0.8886 0.8881 0.8876 0.8871 85 0.8866 0.8861 0.8856 0.8851 0.8846 0.8841 0.8836 0.8831 0.8826 0.8821 86 0.881 6 0.8811 0.8807 0.8802 0.8797 0.8792 0.8788 0.8783 0.8778 0.8774 87 0.8769 0.8765 0.8760 0.8755 0.8751 0.8746 0.8742 0.8737 0 .8733 0.8729 88 0.8724 0.8720 0.8716 0.8711 0.8707 0.8703 0.8698 0.8694 0.8690 0.8686 89 0.8681 0.8677 0.8673 0.8669 0.8665 0.8661 0.8657 0.8653 0.8649 0.8645 90 0.8641 0.8637 0.8633 0.8629 0.8625 0.8621 0.861 7 0.8613 0.8609 0.8606 91 0.8602 0.8598 0.8594 0.8590 0.8587 0.8583 0.8579 0.8576 0.8572 0.8568 92 0.8565 0.8561 0.8558 0.855 4 0.8550 0.8547 0.8543 0.8540 0.8536 0.8533 93 0.8530 0.8526 0.8523 0.8519 0.8516 0.8513 0.8509 0.8506 0.8503 0.8499 94 0.8496 0.8493 0.8489 0.8486 0.8483 0.8480 0.8477 0.8473 0.8470 0.8467 95 0.8464 0.846 0 .8407 97 0.8405 0.8402 0.8399 0.8396 0.8393 0.8391 0.8388 0.8385 0.8382 0.8380 98 0.8377 0.8374 0.8372 0.8369 0.8366 0.8364 0.8361 0.8359 0.8356 0.8353 99 0.8351 0.8348 0.8346 0.8343 0.8341 0.8338 0.8336 0 .8333 0.8331 0.8328 100 0.8326 0.8323 0.8321 0.8319 0.8316 0.8314 0.8311 0.8309 0.8307 0.8304 101 0.8302 0.8300 0.8297 0.8295 0.8293 0.8291 0.8288 0.8286 0.8284 0.8282 102 0.8279 0.8277 0.8275 0.8273 0.8271 0.8268 0.8266 0.8264 0.8262 0.8260 103 0.8258 0.8256 0.8253 0.8251 0.8249 0.8247 0.8245 0.8243 0.8241 0.8239 104 0.8237 0.8235 0.8 233 0.8231 0.8229 0.8227 0.8225 0.8223 0.8221 0.8219 105 0.8217 0.8215 0.8214 0.8212 0.8210 0.8208 0.8206 0.8204 0.8202 0.820 0 106 0.8198 0.8197 0.8195 0.8193 0.8191 0.8189 0.8188 0.8186 0.8184 0.8182 107 0.8180 0.8179 0.8177 0.8175 0.8173 0.8172 0.8170 0.8168 0.8167 0.8165 108 0.8163 0.8161 0.8160 0.8158 0.8156 0.8155 0.8153 0.8152 0.8150 0.8148 109 0.8147 0.8145 0.8143 0.8142 0.8140 0.8139 0.8137 0.8135 0.8134 0.8132 110 0.8131 0.8129 0.8128 0.8126 0.812 4 0.8123 0.8121 0.8120 0.8118 0.8117 111 0.8115 0.8114 0.8112 0.8111 0.8109 0.8108 0.8106 0.8105 0.8103 0.8102 112 0.8101 0.8099 0.8098 0.8096 0.8095 0.8093 0.8092 0.8090 0.8089 0.8088 113 0.8086 0.8085 0.8083 0.8 082 0.8081 0.8079 0.8078 0.8077 0.8075 0.8074 114 0.8072 0.8071 0.8070 0.8068 0.8067 0.8066 0.8064 0.8063 0.8062 0.8060 115 0 .8059 0.8058 0.8056 0.8055 0.8054 0.8052 0.8051 0.8050 0.8049 0.8047 116 0.8046 0.8045 0.8043 0.8042 0.8041 0.8040 0.8038 0.8037 0.8036 0.8034 117 0.8033 0.8032 0.8031 0.8029 0.8028 0.8027 0.8026 0.8024 0.8023 0.8022 118 0.8021 0.8020 0.8018 0.8017 0.8016 0.8015 0.8013 0.8012 0.8011 0.8010 119 0.8009 0.8007 0.8006 0.8005 0.8004 0.800 3 0.8001 0.8000 0.7999 0.7998 120 0.7997 0.7995 0.7994 0.7993 0.7992 0.7991 0.7989 0.7988 0.7987 0.7986 121 0.7985 0.7984 0.7982 0.7981 0.7980 0.7979 0.7978 0.7977 0.7975 0.7974 122 0.7973 0.7972 0.7971 0.7970 0.7 969 0.7967 0.7966 0.7965 0.7964 0.7963 123 0.7962 0.7960 0.7959 0.7958 0.7957 0.7956 0.7955 0.7954 0.7953 0.7951 124 0.7950 0 .7949 0.7948 0.7947 0.7946 0.7945 0.7943 0.7942 0.7941 0.7940 125 0.7939 0.7938 0.7937 0.7936 0.7934 0.7933 0.7932 0.7931 0.7930 0.7929 126 0.7928 0.7927 0.7926 0.7924 0.7923 0.7922 0.7921 0.7920 0.7919 0.7918 127 0.7917 0.7915 0.7914 0.7913 0.7912 0.7911 0.7910 0.7909 0.7908 0.7907 128 0.7905 0.7904 0.7903 0.7902 0.7901 0.7900 0.789 9 0.7898 0.7897 0.7895 129 0.7894 0.7893 0.7892 0.7891 0.7890 0.7889 0.7888 0.7887 0.7886 0.7884 130 0.7883 0.7882 0.7881 0.7880 0.7879 0.7878 0.7877 0.7876 0.7875 0.7873 131 0.7872 0.7871 0.7870 0.7869 0.7868 0.7 867 0.7866 0.7865 0.7864 0.7862 132 0.7861 0.7860 0.7859 0.7858 0.7857 0.7856 0.7855 0.7854 0.7853 0.7852 133 0.7850 0.7849 0 .7848 0.7847 0.7846 0.7845 0.7844 0.7843 0.7842 0.7841 134 0.7840 0.7838 0.7837 0.7836 0.7835 0.7834 0.7833 0.7832 0.7831 0.7830 135 0.7829 0.7828 0.7827 0.7825 0.7824 0.7823 0.7822 0.7821 0.7820 0.7819 136 0.7 818 0.7817 0.7816 0.7815 0.7814 0.7813 0.7812 0.7811 0.7809 0.7808 137 0.7807 0.7806 0.7805 0.7804 0.7803 0.7802 0.7801 0.780 0 0.7799 0.7798 138 0.7797 0.7796 0.7795 0.7794 0.7793 0.7792 0.7791 0.7790 0.7789 0.7787 139 0.7786 0.7785 0.7784 0.7783 0.7782 0.7781 0.7780 0.7779 0.7778 0.7777 140 0.7776 0.7775 0.7774 0.7773 0.7772 0.7771 0.7 770 0.7769 0.7768 0.7767 141 0.7766 0.7765 0.7764 0.7763 0.7762 0.7761 0.7760 0.7759 0.7759 0.7758 142 0.7757 0.7756 0.7755 0 .7754 0.7753 0.7752 0.7751 0.7750 0.7749 0.7748 143 0.7747 0.7746 0.7745 0.7744 0.7744 0.7743 0.7742 0.7741 0.7740 0.7739 144 0.7738 0.7737 0.7736 0.7736 0.7735 0.7734 0.7733 0.7732 0.7731 0.7730 145 0.7730 0.7 729 0.7728 0.7727 0.7726 0.7725 0.7725 0.7724 0.7723 0.7722 146 0.7721 0.7721 0.7720 0.7719 0.7718 0.7717 0.7717 0.7716 0.771 5 0.7714 147 0.7714 0.7713 0.7712 0.7712 0.7711 0.7710 0.7709 0.7709 0.7708 0.7707 148 0.7707 0.7706 0.7705 0.7705 0.7704 0.7703 0.7703 0.7702 0.7702 0.7701 149 0.7700 0.7700 0.7699 0.7699 0.7698 0.7698 0.7697 0.7696 0.7696 0.7695 150 0.7695 0.7694 0.7694 0.7693 0.7693 0.7692 0.7692 0.7691 0.7691 0.7691 Robert Wilks, Australia
Alternatives[edit]
While the Wilkes coefficient was used by the IPF until the end of 2018[6][7], other federations have used different coefficients or even created their own, like NASA. The IPF transition comes at a time when the Olympic Weightlifting Federation (IWF) [8] decided to switch from the existing Sinclair coefficient to Robie points in June 2022. Former IWF technical director Robert Nagy developed the Robie points system. Robie points are calculated based on actual world records in the category, and the value of a world record result is the same (1000 points) in all weight classes.
Alternatives are the Glossbrenner Coefficient [9] (WPC), Reschel Coefficient [10] (GPC, GPA, WUAP, IRP), Outstanding Lifter Coefficient (OL) or NASA Coefficient [11] (NASA), Schwartz/Malone Coefficient, and Siff Coefficient .
While all ratios take gender and weight differences into account, some also take age differences into account. For the cadet and junior age groups, the Foster coefficient is used, and for the main age group (40 years and older) the McCulloch or Reschel coefficient is used.
Odds
TABLE OF ABSOLUTE COEFFICIENTS - GLOSSBRENNER FORMULA
- Glossbrener Formula for Men
- Glossbrener Formula for Women
- Glossbrenner online calculator, developed by Andrey Kostromtsov
- Glossbrenner calculator online, by Andrey Kostromtsov
TABLE OF ABSOLUTE COEFFICIENTS - WILKS FORMULA
The Wilks formula is used in powerlifting competitions to compare the results of athletes of different weight categories and identify the absolute champion of the competition. The Wilks coefficient reflects the relationship between the athlete’s own mass and the weight he lifted both in one of the exercises and in the total eventing event.
The coefficient calculated using the Wilks formula is used to compare the results of athletes of different weights. The Wilks coefficient reflects the relationship between the athlete’s own weight (with an accuracy of 0.1 kg) and the weight he lifted.
To determine the absolute result, it is necessary to multiply the triathlon sum by the Wilks coefficient. The athlete with the highest absolute odds has preference. For example: An athlete weighing 45.5 kg gained 300 kg. We determine the absolute coefficient (marked in red) and multiply by the amount. Absolute result = 1.1382 *300 =341.46
TABLE OF ABSOLUTE COEFFICIENTS - SCHWARTZ/MALONE FORMULA
1. Go to the link 2. Check in the item “Totals are given in” kg 3. In the item “Use the following formulas” uncheck all the boxes except Schwartz/Malone 4. In the item “Formula used to age adjust Masters (age 40 and above ) results" set to Schwartz Masters Formula 5. In the item "Adjusting for Teen (14-23 years) totals" set to For all formulas 6. Below in the "WEIGHT" field enter the athlete's own weight in the format 96.6 (Required with a dot, not with a comma!) 7. In the “TOTAL” field we put one 8. In the “GENDER” field we select the gender: M - men, F - women 9. In the “AGE” field we enter how many full years the athlete is 10. Below we click on “Calculate” 11. In the third column from the right “SCORE” is the Schwartz/Malone coefficient, which is used in IPA competitions
TABLE OF ABSOLUTE COEFFICIENTS - REISCHEL FORMULA
Since primitive times, people have wondered what is stronger and how to determine the strength of people who have different body weights and show different results? When powerlifting competitions reached mass and popularity, there was an urgent need to determine the absolute winner. The Reichel formula is adopted in many powerlifting federations to determine the absolute winner coefficient, we are sure it will be useful for you too!
Go to the Reshel Table for Women Go to the Reshel Table for Men Go to the Reshel Table for Masters
Rate this article:
[Total: 1 Average: 5]
Similar
Links[edit]
- "Wilkes Formula 2 released". Powerlifting Australia
. 2020-02-28. Retrieved January 19, 2022. - Vanderburg, Paul M; Batterham, Alan M (1999). "Validation of the Wilks Formula for Powerlifting." Medicine and Science in Sports and Exercise
.
31
(12): 1869–75. DOI: 10.1097/00005768-199912000-00027. PMID 10613442. - Jump up
↑ Myers, Al (07/13/2010).
"O'Carroll Formula". USAWA
. Retrieved January 19, 2022. - "Reflections on Force, Field, and Lifting Formulas" (PDF). www.starkcenter.org
. Retrieved January 19, 2022. - "International Powerlifting Federation IPF". International Powerlifting Federation IPF
. 2021-01-09. Retrieved January 19, 2022. - "IPF gets rid of Wilkes formula". BarBend
. 2018-10-08. Retrieved January 19, 2022. - [1] [ broken link
] - "Robie/Sinclair". International Weightlifting Federation
. 2021-01-19. Retrieved January 19, 2022. - "The Best APF Athlete Formula". worldpowerliftingcongress.com
. Retrieved April 8, 2022. - "Reschel's formula for the coefficient f". globalpowerliftingalliance.com
. Retrieved April 8, 2022. - "Coefficient system". NASA Powerlifting
. 2014-08-03. Retrieved April 8, 2022.