Метан — формула, строение и основные свойства природного газа


Андрей Киселев, Игорь Кароль «Природа» №11, 2015

Об авторах

Андрей Александрович Киселев

— кандидат физико-математических наук, старший научный сотрудник отдела динамической метеорологии Главной геофизической обсерватории им. А. И. Воейкова (г. Санкт-Петербург). Область научных интересов — фотохимические процессы в атмосфере.

Игорь Леонидович Кароль

— доктор физико-математических наук, профессор, заведующий лабораторией той же обсерватории. Специалист в области моделирования климата, фотохимических и радиационных процессов в атмосфере. Многие годы занимается проблемами атмосферного озона.

Около 10 лет назад вышла наша статья, посвященная проблеме атмосферного метана []. В ней, в частности, высказывалось убеждение о сохранении повышенного интереса к этой теме в будущем. Такой вывод был очевиден и не требовал особой прозорливости, поэтому неудивительно, что он подтвердился. Действительно, все это время метан продолжал оставаться как предметом всесторонних интенсивных исследований, так и объектом для ряда политических решений. Словом, накопилось много новой и, на наш взгляд, интересной информации, которую мы хотели бы представить вниманию читателей «Природы». Однако обо всем по порядку.

Метан (СН4) — один из основных парниковых газов, «ответственных» за широко обсуждаемое в последние годы глобальное потепление. Вклад атмосферного метана в него — второй после вклада СО2 [, ]. В то же время молекула СН4 «работает» на глобальное потепление значительно, в десятки раз, эффективнее молекулы углекислого газа. Измерения показывают, что начиная с доиндустриального периода концентрация метана выросла примерно на 150%, в то время как концентрация СО2 — лишь на 40%. Поэтому роль СН4 как парникового газа постоянно возрастает. Нелишне добавить, что увеличение содержания метана способствует росту концентрации другого парникового и жизнеобеспечивающего газа — озона — как в тропосфере [], так и в стратосфере []. Бо

льшая часть атмосферного метана имеет биогенное бактериальное происхождение. Химическим путем он не образуется. Поэтому поступление природного метана в атмосферу полностью контролируется его потоками с земной поверхности. Основные естественные источники СН4 — заболоченные территории, пресноводные водоемы, поверхность океана, а также колонии термитов и сжигание биомассы в результате пожаров. С антропогенной деятельностью связаны потоки метана в атмосферу при добыче ископаемого топлива, с полигонов захоронения бытовых отходов и мусора на свалках, при очистке сточных вод, расширении сельскохозяйственных угодий (рисовых плантаций), разведении крупного рогатого скота и др. Разнородность источников метана — основная причина большой погрешности в оценках их интенсивности. Разрушение молекул метана происходит в результате его атмосферных химических реакций с гидроксилом (~90%, []) и атомарным хлором (выше 35 км).

Краткая характеристика

Природный метан образуется при гниении останков живых организмов. В переводе с английского «methane» означает «болотный газ», так как чаще всего его обнаруживают в болотах и каменноугольных шахтах.

Почти 95% реагента появляется в результате биологических процессов. Пятая часть годовых выбросов газа в атмосферу приходится на коз и коров, в желудках которых живут бактерии, вырабатывающие метан. В атмосферу он попадает, когда рогатый скот выводит из организма продукты своей жизнедеятельности.

Другими источниками вещества являются:

  • термиты;
  • рис-сырец;
  • болотистые водоёмы;
  • фильтрация природного газа;
  • фотосинтез растений;
  • вулканы;
  • давно погибшие организмы.

Поскольку вещество обычно связано с живыми организмами, то учёные полагают, что его присутствие на планете указывает на наличие жизни. Так, когда этот газ был обнаружен в атмосферах Марса, специалисты начали тщательное изучение планеты именно на предмет существования живых организмов. Но дальнейшие исследования показали, что на удалённых планетах Солнечной системы метана значительно больше, хотя там он появился в результате химических реакций.

На Земле вещество просачивается через трещины в земной коре, находящиеся на океанском дне, в больших количествах выделяется во время горных разработок и при лесных пожарах. Кроме того, недавно учёными был обнаружен новый источник газа, который никогда ранее в таком ключе не рассматривался.

***

То, что 105 стран договорились снизить выбросы метана на треть к 2030 году — очень важный шаг. Даже при том, что многие природозащитные организации выступили с критикой решений, назвав их недостаточными. Остается надеяться, что Россия, один из мировых лидеров по выбросам метана, тоже вскоре присоединится к соглашению. Чем быстрее политики России, Китая и Индии придут к пониманию важности ограничения выбросов метана, тем больше у нас шансов выйти из климатического кризиса.

Как работают технологии захвата и хранения углерода: промышленная революция наоборот

Физические качества

Метан представляет собой самый простой углеводород. Считается, что он имеет специфический запах, но это распространённое заблуждение. Чистый газ не имеет запаха, характерный аромат он приобретает благодаря специальным добавкам, которые добавляют в вещество для предупреждения о его утечке, ведь цвета химическое соединение также не имеет.

Кроме того, к физическим свойствам метана относятся:

  • Горение голубым пламенем.
  • Сгорание без выделения вредных продуктов.
  • Плохая растворимость в воде.
  • Он легче воздуха.
  • Основная составляющая природных, попутных нефтяных, рудничного и болотного газов.
  • Кипение при температуре -161 °C.
  • Замерзание при температуре -183 °C.
  • Молярная масса составляет 16,044 г/моль.
  • Плотность — 0,656 кг/м³.
  • При соединении с воздухом образуются взрывоопасные смеси.
  • В жидком виде представляет собой бесцветную жидкость без запаха.

Наиболее опасен метан, который выделяется во время подземных разработок полезных ископаемых, а также на фабриках, занимающихся переработкой и обогащением угля. Когда количество газа в воздухе достигает 5−6%, то он начинает гореть рядом с источниками тепла.

Если уровень вещества поднимается до 14−16%, то может произойти взрыв. При увеличении концентрации вещество горит при постоянном поступлении кислорода. Если же в этот момент количество метана начнёт снижаться, то результатом также может стать взрыв. При взрыве огонь, подпитываемый газом, движется со скоростью от 500 до 700 м/сек. Давление же вещества в этот момент в замкнутом пространстве составляет 1 Мн/м2.

При соприкосновении с источником тепла метан воспламеняется с небольшой задержкой. Это свойство вещества применяется при изготовлении предохранительных взрывчатых веществ и электрооборудования, безопасного при взрывах. На всех объектах, где существует опасность выброса метана, действуют правила техники безопасности «газовый режим».

Химические свойства

В химии формула метана — CH4. Соединение плохо вступает в химические связи.

В обычных условиях оно не реагирует со следующими веществами:

  • концентрированные кислоты;
  • расплавленные и концентрированные щелочи;
  • щелочные металлические реагенты;
  • галогены;
  • перманганат калия;
  • дихромат калия в кислой среде.

При температуре около 200 °C и давлении от 30 до 90 атмосфер болотный газ окисляется, преобразуясь в муравьиную кислоту. Вещество образует соединения, называемые газовыми гидратами, которые часто встречаются в природе.

По своим химическим свойствам метан схож с другими реагентами, относящимися к алканам. А потому он вступает в такие химические реакции, как:

  • Конверсия в синтез-газ. Синтез-газ, который образуется в результате указанной реакции, используется для получения метанола, углеводородов и так далее.
  • Галогенирование. Такая реакция является цепной. При ней молекула брома или йода подвергается воздействию света и распадается на радикалы, которое затем атакуют молекулы метана. В результате от соединения отрывается атом водорода, а газ становится свободным метилом CH3. Получившееся вещество сталкивается с молекулами брома или йода, которые разрушаются, образуя новые радикалы этих реагентов.
  • Нитрование.
  • Окисление или горение. Эта реакция происходит при избытке кислорода и описывается следующим уравнением: CH4 + 2O2 → CO2 + 2H2O. В этом случае пламя имеет голубой цвет. Если кислорода недостаточно, то результатом реакции становится выработка не углекислого газа, а оксида углерода. Если же кислорода ещё меньше, то взаимодействие веществ приведёт к выделению мелкодисперсного углерода.
  • Сульфохлорирование.
  • Сульфоокисление.
  • Разложение.
  • Дегидрирование.
  • Каталитическое окисление. В подобных реакциях из болотного газа образуются карбоновые кислоты, спирты, альдегиды.

Лечение

Первая помощь заключается в немедленном выносе пострадавшего на свежий воздух. Пострадавшего необходимо освободить от стесняющей тело одежды, согреть, обложив тело грелками. При нарушении дыхания дать кислород. При отсутствии дыхания немедленно (до прибытия врача!) искусственное дыхание методом изо рта в рот или изо рта в ное. При тяжелом отравлении необходима госпитализация.

В стационаре применяется оксигенобаротерапия, дегидратационная терапия, введение сердечно-сосудистых лекарственных средств и средств, нормализующих обмен веществ, по показаниям — гормонотерапия, витаминотерапия, профилактика инфекций.

Получение в промышленности и лаборатории

В промышленных условиях вещество получают посредством нагревания углерода и водорода или синтеза водяного газа. Для того чтобы реакция протекала успешно, используют катализатор, обычно в этом качестве применяется никель. В США для добычи простейшего углеводорода используется специальная система, способная извлекать соединение из природного угля. Но также метан выделяется в виде подобного продукта при термической переработке нефти и нефтепродуктов, коксовании и гидрировании каменного угля.

В лаборатории для получения вещества применяются следующие методы:

  • Реакция гидроксида натрия с ацетатом натрия.
  • Взаимодействие карбида алюминия.
  • Нагревание натристой извести с уксусной кислотой. Для этой реакции необходима безводная среда, а потому в ней применяется гидроксид натрия, который является наименее гигроскопичным.

Технология сжижения природного газа

Чистый метан получают из природного газа, удаляя из него другие компоненты: этан, пропан, бутан и азот. Чтобы получить жидкий метан, газ сжимают с последующим охлаждением. Процесс сжижения производится циклами. На каждом этапе объём уменьшатся до 12 раз. В жидкость он превращается в последнем цикле. Для сжижения используются разные виды установок, среди них:

  • дроссельные;
  • турбинно-вихревые;
  • турбодетандерные.

При этом могут использоваться следующие схемы:

  • каскадная;
  • расширительная.

В каскадной схеме используются три агента для охлаждения. При этом температура жидкого метана снижается поэтапно. Такая технология требует больших капитальных затрат. В настоящее время данный процесс усовершенствовали и стали применять сразу смесь хладоагентов (этан и пропан). Такая схема стала самоохлаждающей, так как эти вещества получают из сжижаемого природного газа. Затраты немного уменьшились, но всё же остаются высокими.

При применении расширительной схемы используются более экономичные центробежные машины. Смесь предварительно очищают от воды и других загрязнений и сжижают под давлением за счёт теплообмена с холодным расширенным газовым потоком. Однако этот процесс требует большего затрата энергии, чем при каскадной схеме (на 25-35 %). Но в то же время экономятся капитальные затраты на компрессоры и эксплуатацию оборудования.

Температура жидкого метана, полученного в результате вышеописанного процесса, составляет в среднем 162 градуса.

Применение метана

Болотный газ самый термически устойчивый углеводород, а потому он широко применяется и в быту, и в промышленности. Хлорирование вещества даёт возможность получения метилхлорида, метиленхлорида, хлороформа, четырёххлористого углерода. Результатом его неполного сгорания является сажа, Если метан каталитически окисляется, то получается формальдегид. А его реакция с серой приводит к образованию сероуглерода.

К важным методам получения ацетилена из простейшего углеводорода относятся:

  • термоокислительный крекинг,
  • электрокрекинг.

Газ также применяется для производства синильной кислоты. Кроме того, он даёт водород, необходимый для выработки водяного газа, который, в свою очередь, применяется для создания углеводородов, альдегидов и тому подобного. Кроме того, метан необходим при производстве нитрометана.

В настоящее время газ стал часто использоваться в качестве автомобильного топлива. Но его плотность в 1000 раз меньше плотности бензина, а потому, чтобы заправить автомобиль метаном на тот же объём, что и бензином, при равном давлении необходим соответствующий бак. В таком случае для обычной поездки потребовалось бы возить прицеп с топливом.

Учёные решили эту проблему, увеличив плотность газа до 200−250 атмосфер. Сжатое вещество закачивается в специальные баллоны, установленные на автомобилях особой конструкции.

Ссылки

  • Алкены Этилен • Пропен • Бутены • Пентены • Гексены • Гептены • Октен
    Алкины Ацетилен • Пропин • Бутин
    Диены Пропадиен • Бутадиен • Изопрен • Циклобутадиен
    Другие ненасыщенные Винилацетилен • Диацетилен • Каротин
    Циклоалканы Циклопропан • Циклобутан • Циклопентан • Циклогексан • Циклооктан • Декалин • Индан • Инден
    Ароматические Бензол • Толуол • Диметилбензолы • Этилбензол • Пропилбензол • Кумол • Стирол • Фенилацетилен • Индан • Дифенил • Дифенилметан • Трифенилметан • Тетрафенилметан • Инден
    Полициклические Нафталин • Антрацен • Бензантрацен • Пентацен • Фенантрен • Пирен • Бензпирен • Азулен • Хризен

Парниковый эффект

Метан является одним из газов, создающих на планете парниковый эффект. Чтобы измерить уровень его парниковой активности, необходимо принять за единицу меру воздействия на климат нашей планеты диоксида углерода. При таком соотношении влияние метана будет равно 23. Специалисты в области изучения парникового эффекта отмечают, что количество указанного газа в земной атмосфере значительно выросло за последние два столетия.

Объём метана в современной атмосфере в среднем составляет 1,8 части на миллион. Это количество в 200 раз меньше того же показателя углекислого газа. Необходимо отметить, что молекулы соединения рассеивают и удерживают теплоту, которую излучает нагретая солнцем планета, гораздо лучше, чем молекулы углекислого газа. И также необходимо отметить, что углеводород поглощает земное излучение в тех спектральных областях, которые свободно проходят через другие газовые соединения, создающие эффект парника.

Но тем не менее такие газы планете необходимы. Без двуокиси углерода, водяных паров, метана и других составляющих атмосферы температура на поверхности Земли была бы значительно ниже средних 15 градусов тепла.

Влияние на организм человека

Человек может отравиться, надышавшись метаном при аварии на производстве или из-за неправильного обращения с приборами, работающими на этом газе. Возможна такая ситуация и при длительном нахождении на болоте, в шахте. Если концентрация вещества в воздухе составляет 20 и более процентов, то отравление может быть очень тяжёлым, вплоть до летального исхода.

Работники химических производств, рудников и шахт подвержены другому способу отравления углеводородом. Зачастую эти люди на протяжении длительного времени регулярно вдыхают небольшие дозы вещества.

Кроме того, хроническая интоксикация может наступить из-за заболеваний кишечника, например, дисбактериоза. В таких случаях в организме больного метан образуется в повышенном количестве. Этот газ не станет причиной серьёзной интоксикации, но всё же он может вызвать в организме разные нарушения, привести к желудочно-кишечному дискомфорту и общему ухудшению самочувствия.

Отличить острое отравление метаном можно по следующим признакам:

  • головокружение;
  • шум в ушах;
  • сонливость;
  • общая слабость;
  • потеря координации;
  • нарушение речи;
  • резь в глазах;
  • слезотечение;
  • удушье;
  • усиленное сердцебиение;
  • понижение артериального давления;
  • тошнота;
  • приступы рвоты;
  • синюшность кожных покровов и слизистых оболочек.

Если отравление тяжёлое, то человек теряет сознание, у него начинаются судороги, за которыми следует кома. А также возможна остановка дыхания и сердцебиения.

Если отравление метаном является хроническим, то пострадавший страдает от частых головных болей, общего недомогания, низкого артериального давления и снижения работоспособности. Человек становится бледным и вялым, испытывает упадок сил. Гипотония может вызывать обмороки. И также возможно истощение нервной системы, которое выражается в повышенной раздражительности, нервозности и тому подобном.

Метан известен, как один из самых опасных газов. Он токсичен, горюч и взрывоопасен. Вещество не имеет ни цвета, ни запаха, а потому обнаружить его в воздухе крайне сложно. Чтобы не подвергать своё здоровье и жизнь опасности, следует внимательно относится к технике безопасности и соблюдать осторожность при работе или бытовом использовании метана.

Комбинированные курсы Данабола

Учитывая частоту побочных эффектов от использования препарата, спортсмены предпочитают комбинировать его с другими видами анаболических стероидов. Комбинированный прием повышает эффективность курса Данабола, снижая вероятность побочных действий из-за различной фармакодинамики лекарств.

Любая комбинация включает точную дозу для каждого агента и определенный способ введения. Примером комбинации может быть метандиенон для роста мышц и Винстрол для снижения побочных эффектов. По поводу смешивания разных стероидов следует проконсультироваться с профессиональным тренером и врачом.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]